零基础AI入门实战(深度学习+Pytorch),AI必备基础
通俗易懂零基础入门案例实战跨专业提升课程内容:001-课程介绍.mp4002-1-神经网络要完成的任务分析.mp4003-2-模型更新方法解读.mp4004-3-损失函数计算方法.mp4005-4-前向传播流程解读.mp4006-5-反向传播演示.mp4007-6-神经网络整体架构详细拆解.mp4008-7-神经网络效果可视化分析.mp4009-8-神经元个数的作用.mp4010-9-预处理与dropout的作用.mp4011-1-卷积神经网络概述分析.mp4012-2-卷积要完成的任务解读.mp4013-3-卷积计算详细流程演示.mp4014-4-层次结构的作用.mp4015-5-参数共享的作用.mp4016-6-池化层的作用与效果.mp4017-7-整体网络结构架构分析.mp4018-8-经典网络架构概述.mp4019-1-RNN网络结构原理与问题.mp4020-2-注意力结构历史故事介绍.mp4021-3-self-attention要解决的问题.mp4022-4-QKV的来源与作用.mp4023-5-多头注意力机制的效果.mp4024-6-位置编码与解码器.mp4025-7-整体架构总结.mp4026-8-BERT训练方式分析.mp4027-1-PyTorch框架与其他框架区别分析.mp4028-2-CPU与GPU版本安装方法解读.mp4029-1-数据集与任务概述.mp4030-2-基本模块应用测试.mp4031-3-网络结构定义方法.mp4032-4-数据源定义简介.mp4033-5-损失与训练模块分析.mp4034-6-训练一个基本的分类模型.mp4035-7-参数对结果的影响.mp4036-1-任务与数据集解读.mp4037-2-参数初始化操作解读.mp4038-3-训练流程实例.mp4039-4-模型学习与预测.mp4040-1-输入特征通道分析.mp4041-2-卷积网络参数解读.mp4042-3-卷积网络模型训练.mp4043-1-任务分析与图像数据基本处理.mp4044-2-数据增强模块.mp4045-3-数据集与模型选择.mp4046-4-迁移学习方法解读.mp4047-5-输出层与梯度设置.mp4048-6-输出类别个数修改.mp4049-7-优化器与学习率衰减.mp4050-8-模型训练方法.mp4051-9-重新训练全部模型.mp4052-10-测试结果演示分析.mp4053-4-实用Dataloader加载数据并训练模型.mp4054-1-Dataloader要完成的任务分析.mp4055-2-图像数据与标签路径处理.mp4056-3-Dataloader中需要实现的方法分析.mp4057-1-数据集与任务目标分析.mp4058-2-文本数据处理基本流程分析.mp4059-3-命令行参数与DEBUG.mp4060-4-训练模型所需基本配置参数分析.mp4061-5-预料表与字符切分.mp4062-6-字符预处理转换ID.mp4063-7-LSTM网络结构基本定义.mp4064-8-网络模型预测结果输出.mp4065-9-模型训练任务与总结.mp4066-1-基本结构与训练好的模型加载.mp4067-2-服务端处理与预测函数.mp4068-3-基于Flask测试模型预测结果.mp4069-1-视觉transformer要完成的任务解读.mp4070-1-项目源码准备.mp4071-2-源码DEBUG演示.mp4072-3-Embedding模块实现方法.mp4073-4-分块要完成的任务.mp4074-5-QKV计算方法.mp4075-6-特征加权分配.mp4076-7-完成前向传播.mp4077-8-损失计算与训练.mp4
发表评论:
◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。